Resume Review: Software Engineer

Role: Software Engineer
LinkedIn: Confidential

Resume: Confidential

Format:

What’s Working Well

Areas of Opportunity

4-Sentence Summary

Bullet Point Optimizations (A-P-R Method)
Market Fit Analysis (Per Requests)

Skills Section Evaluation

Final Notes

Feedback:

1. What’s Working Well (Strong Signals Already Present)

You have several things FAANG recruiters actively screen for:

1. Real system ownership

Billing systems
Async orchestration
DAG execution

RAG pipelines

High-concurrency workflows

Resume Review: Software Engineer



2. Measurable impact

e 60% latency reduction

e 35% accuracy improvements

e 10x throughput scaling

¢ 50% manual effort reduction
FAANG doesn’t require perfect metrics — they require causal reasoning. You’re already doing that.
3. Modern stack relevance

e Python + Flask + Celery

e Postgres, Redis-style concurrency patterns

e LLM workflows, RAG, Pinecone

e Stripe, billing, metering

2. Areas of Opportunity

A. Bullets are sometimes task-dense instead of decision-dense
You often list what you built, but FAANG wants:

e Why that architecture?

e What constraint forced the decision?

e What tradeoff did you navigate?

B. Experience hierarchy needs tightening

FAANG recruiters skim top-down. The first 30 seconds decide everything.

C. Project section needs intent, not just “cool”
FAANG doesn’t reward projects for novelty — they reward them for:
e (lear scope
e Explicit learning goal

e Production-like decisions

3. The Hattix180 4-Sentence Summary (Optional)
Before I show an example, here’s how FAANG reads this section.

Sentence 1 — Identity + scope

Who you are, what kind of engineer you are, and the problem space you operate in.
Sentence 2 — Impact evidence

1-2 concrete outcomes that show scale, performance, or complexity.

Sentence 3 — Technical throughline

Your “engineering personality” — systems, performance, reliability, Al infra, etc.
Sentence 4 — Directional intent

What kind of teams you’re targeting (this matters more than people admit).

Example (Calibrated for FAANG Backend)

Resume Review: Software Engineer



Backend Software Engineer with 2+ years of experience building high-throughput, distributed systems across
billing, orchestration, and AI-driven workflows in startup and enterprise environments. Delivered performance
improvements up to 60%, scaled async pipelines under high concurrency, and built production RAG systems
powering multi-turn Al assistants. My work consistently centers on system reliability, performance tradeoffs, and
ownership of backend architecture from design to production. Now targeting backend or platform engineering
roles on teams building large-scale, data-intensive systems.

4. Hattix180 APR Method Explainer + Bullet Optimizations
Before rewriting anything, here’s my framing of bullet point optimization.
If a bullet doesn’t clearly show ownership + reasoning + outcome, it’s noise.
That’s why we use APR:
e Action — what you did
e Problem — why it mattered
¢ Result — what changed because of it

It prevents the #1 FAANG resume failure mode: task-only bullets.

Example 1: Billing System

Original: Architected a metered billing system using Flask, React, Postgres, and Stripe, enabling 3+ pricing
strategies through granular usage tracking.

Optimized (APR): Designed and owned a metered billing platform by modeling granular usage events in
Postgres and integrating Stripe pricing logic, enabling 3 distinct pricing strategies and supporting scalable cost-
plus billing as customer volume grew.

Why this works
e Ownership is explicit (“designed and owned”)
e Problem is implied (pricing scalability)

e Result is business-relevant, not just technical

Example 2: DAG Executor

Original: Reduced average execution time of multi-step campaigns from 9 minutes to 3 minutes by
implementing a DAG-based parallel task executor.

Optimized (APR): Re-architected a sequential campaign execution pipeline into a DAG-based parallel task
executor, eliminating blocking dependencies and cutting end-to-end runtime from 9 minutes to 3 minutes under
production load.

Why this works
o Shows architectural decision-making
e Names the constraint (blocking dependencies)

e Signals systems thinking FAANG cares about

Example 3: RAG System (Very FAANG-Relevant)

Original: Boosted response accuracy by 35% in a multi-turn Al chat assistant by building a RAG system using
OpenAl + Pinecone.

Optimized (APR): Built a production RAG pipeline by combining semantic retrieval (Pinecone) with structured
prompt injection, improving multi-turn response accuracy by 35% and reducing hallucinations in long-context

Resume Review: Software Engineer



conversations.
Why this works
e Shows you understand why RAG exists
e Mentions failure modes (hallucinations)

e Reads like applied Al infra, not hobby ML

5. Market Fit

Based on your profile:

Strongest Fit
e Google — infra, orchestration, performance-heavy backend teams
e Meta — backend systems, async pipelines, data-heavy services

e Amazon — platform, internal tooling, distributed services

Moderate Fit

e Apple — more team-dependent; stronger if infra-focused

o Netflix — higher bar, fewer early-career openings, very systems-heavy
If I were advising you strategically:

Target Google L3/1L4 backend, Meta E3/E4, or Amazon SDE I/II roles that touch infra, pipelines, or Al-adjacent
systems.

Resume Review: Software Engineer



