
Resume Review: Software Engineer
Role: Software Engineer

LinkedIn: Confidential

Resume: Confidential 

Format:
What’s Working Well

Areas of Opportunity

4-Sentence Summary 

Bullet Point Optimizations (A-P-R Method)

Market Fit Analysis (Per Requests)

Skills Section Evaluation

Final Notes

Feedback:

1. What’s Working Well (Strong Signals Already Present)
You have several things FAANG recruiters actively screen for:

1. Real system ownership

Billing systems

Async orchestration

DAG execution

RAG pipelines

High-concurrency workflows

Resume Review: Software Engineer 1



2. Measurable impact

60% latency reduction

35% accuracy improvements

10× throughput scaling

50% manual effort reduction

FAANG doesn’t require perfect metrics — they require causal reasoning. You’re already doing that.

3. Modern stack relevance

Python + Flask + Celery

Postgres, Redis-style concurrency patterns

LLM workflows, RAG, Pinecone

Stripe, billing, metering

2. Areas of Opportunity

A. Bullets are sometimes task-dense instead of decision-dense
You often list what you built, but FAANG wants:

Why that architecture?

What constraint forced the decision?

What tradeoff did you navigate?

B. Experience hierarchy needs tightening
FAANG recruiters skim top-down. The first 30 seconds decide everything.

C. Project section needs intent, not just “cool”
FAANG doesn’t reward projects for novelty — they reward them for:

Clear scope

Explicit learning goal

Production-like decisions

3. The Hattix180 4-Sentence Summary (Optional)
Before I show an example, here’s how FAANG reads this section.

Sentence 1 — Identity + scope

Who you are, what kind of engineer you are, and the problem space you operate in.

Sentence 2 — Impact evidence

1–2 concrete outcomes that show scale, performance, or complexity.

Sentence 3 — Technical throughline

Your “engineering personality” — systems, performance, reliability, AI infra, etc.

Sentence 4 — Directional intent

What kind of teams you’re targeting (this matters more than people admit).

Example (Calibrated for FAANG Backend)

Resume Review: Software Engineer 2



Backend Software Engineer with 2+ years of experience building high-throughput, distributed systems across 
billing, orchestration, and AI-driven workflows in startup and enterprise environments. Delivered performance 
improvements up to 60%, scaled async pipelines under high concurrency, and built production RAG systems 
powering multi-turn AI assistants. My work consistently centers on system reliability, performance tradeoffs, and 
ownership of backend architecture from design to production. Now targeting backend or platform engineering 
roles on teams building large-scale, data-intensive systems.

4. Hattix180 APR Method Explainer + Bullet Optimizations
Before rewriting anything, here’s my framing of bullet point optimization.

If a bullet doesn’t clearly show ownership + reasoning + outcome, it’s noise.

That’s why we use APR:

Action — what you did

Problem — why it mattered

Result — what changed because of it

It prevents the #1 FAANG resume failure mode: task-only bullets.

Example 1: Billing System
Original: Architected a metered billing system using Flask, React, Postgres, and Stripe, enabling 3+ pricing 
strategies through granular usage tracking.

Optimized (APR): Designed and owned a metered billing platform by modeling granular usage events in 
Postgres and integrating Stripe pricing logic, enabling 3 distinct pricing strategies and supporting scalable cost-
plus billing as customer volume grew.

Why this works

Ownership is explicit (“designed and owned”)

Problem is implied (pricing scalability)

Result is business-relevant, not just technical

Example 2: DAG Executor
Original: Reduced average execution time of multi-step campaigns from 9 minutes to 3 minutes by 
implementing a DAG-based parallel task executor.

Optimized (APR): Re-architected a sequential campaign execution pipeline into a DAG-based parallel task 
executor, eliminating blocking dependencies and cutting end-to-end runtime from 9 minutes to 3 minutes under 
production load.

Why this works

Shows architectural decision-making

Names the constraint (blocking dependencies)

Signals systems thinking FAANG cares about

Example 3: RAG System (Very FAANG-Relevant)
Original: Boosted response accuracy by 35% in a multi-turn AI chat assistant by building a RAG system using 
OpenAI + Pinecone.

Optimized (APR): Built a production RAG pipeline by combining semantic retrieval (Pinecone) with structured 
prompt injection, improving multi-turn response accuracy by 35% and reducing hallucinations in long-context 

Resume Review: Software Engineer 3



conversations.

Why this works

Shows you understand why RAG exists

Mentions failure modes (hallucinations)

Reads like applied AI infra, not hobby ML

5. Market Fit
Based on your profile:

Strongest Fit

Google — infra, orchestration, performance-heavy backend teams

Meta — backend systems, async pipelines, data-heavy services

Amazon — platform, internal tooling, distributed services

Moderate Fit

Apple — more team-dependent; stronger if infra-focused

Netflix — higher bar, fewer early-career openings, very systems-heavy

If I were advising you strategically:

Target Google L3/L4 backend, Meta E3/E4, or Amazon SDE I/II roles that touch infra, pipelines, or AI-adjacent 
systems.

Resume Review: Software Engineer 4


